Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Modern Hopfield Networks for Few- and Zero-Shot Reaction Template Prediction (2104.03279v3)

Published 7 Apr 2021 in cs.LG, cs.AI, q-bio.BM, and stat.ML

Abstract: Finding synthesis routes for molecules of interest is an essential step in the discovery of new drugs and materials. To find such routes, computer-assisted synthesis planning (CASP) methods are employed which rely on a model of chemical reactivity. In this study, we model single-step retrosynthesis in a template-based approach using modern Hopfield networks (MHNs). We adapt MHNs to associate different modalities, reaction templates and molecules, which allows the model to leverage structural information about reaction templates. This approach significantly improves the performance of template relevance prediction, especially for templates with few or zero training examples. With inference speed several times faster than that of baseline methods, we improve predictive performance for top-k exact match accuracy for $\mathrm{k}\geq5$ in the retrosynthesis benchmark USPTO-50k.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.