Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning robust speech representation with an articulatory-regularized variational autoencoder (2104.03204v1)

Published 7 Apr 2021 in cs.SD, cs.CL, and eess.AS

Abstract: It is increasingly considered that human speech perception and production both rely on articulatory representations. In this paper, we investigate whether this type of representation could improve the performances of a deep generative model (here a variational autoencoder) trained to encode and decode acoustic speech features. First we develop an articulatory model able to associate articulatory parameters describing the jaw, tongue, lips and velum configurations with vocal tract shapes and spectral features. Then we incorporate these articulatory parameters into a variational autoencoder applied on spectral features by using a regularization technique that constraints part of the latent space to follow articulatory trajectories. We show that this articulatory constraint improves model training by decreasing time to convergence and reconstruction loss at convergence, and yields better performance in a speech denoising task.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.