Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deep Learning and Traffic Classification: Lessons learned from a commercial-grade dataset with hundreds of encrypted and zero-day applications (2104.03182v2)

Published 7 Apr 2021 in cs.LG and cs.NI

Abstract: The increasing success of Machine Learning (ML) and Deep Learning (DL) has recently re-sparked interest towards traffic classification. While classification of known traffic is a well investigated subject with supervised classification tools (such as ML and DL models) are known to provide satisfactory performance, detection of unknown (or zero-day) traffic is more challenging and typically handled by unsupervised techniques (such as clustering algorithms). In this paper, we share our experience on a commercial-grade DL traffic classification engine that is able to (i) identify known applications from encrypted traffic, as well as (ii) handle unknown zero-day applications. In particular, our contribution for (i) is to perform a thorough assessment of state of the art traffic classifiers in commercial-grade settings comprising few thousands of very fine grained application labels, as opposite to the few tens of classes generally targeted in academic evaluations. Additionally, we contribute to the problem of (ii) detection of zero-day applications by proposing a novel technique, tailored for DL models, that is significantly more accurate and light-weight than the state of the art. Summarizing our main findings, we gather that (i) while ML and DL models are both equally able to provide satisfactory solution for classification of known traffic, however (ii) the non-linear feature extraction process of the DL backbone provides sizeable advantages for the detection of unknown classes.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.