Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

RTIC: Residual Learning for Text and Image Composition using Graph Convolutional Network (2104.03015v3)

Published 7 Apr 2021 in cs.CV

Abstract: In this paper, we study the compositional learning of images and texts for image retrieval. The query is given in the form of an image and text that describes the desired modifications to the image; the goal is to retrieve the target image that satisfies the given modifications and resembles the query by composing information in both the text and image modalities. To remedy this, we propose a novel architecture designed for the image-text composition task and show that the proposed structure can effectively encode the differences between the source and target images conditioned on the text. Furthermore, we introduce a new joint training technique based on the graph convolutional network that is generally applicable for any existing composition methods in a plug-and-play manner. We found that the proposed technique consistently improves performance and achieves state-of-the-art scores on various benchmarks. To avoid misleading experimental results caused by trivial training hyper-parameters, we reproduce all individual baselines and train models with a unified training environment. We expect this approach to suppress undesirable effects from irrelevant components and emphasize the image-text composition module's ability. Also, we achieve the state-of-the-art score without restricting the training environment, which implies the superiority of our method considering the gains from hyper-parameter tuning. The code, including all the baseline methods, are released https://github.com/nashory/rtic-gcn-pytorch.

Citations (39)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com