Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Parameterized Complexity of Elimination Distance to First-Order Logic Properties (2104.02998v1)

Published 7 Apr 2021 in cs.LO, cs.CC, cs.DM, and cs.DS

Abstract: The elimination distance to some target graph property P is a general graph modification parameter introduced by Bulian and Dawar. We initiate the study of elimination distances to graph properties expressible in first-order logic. We delimit the problem's fixed-parameter tractability by identifying sufficient and necessary conditions on the structure of prefixes of first-order logic formulas. Our main result is the following meta-theorem: for every graph property P expressible by a first order-logic formula \phi\in \Sigma_3, that is, of the form \phi=\exists x_1\exists x_2\cdots \exists x_r \forall y_1\forall y_2\cdots \forall y_s \exists z_1\exists z_2\cdots \exists z_t \psi, where \psi is a quantifier-free first-order formula, checking whether the elimination distance of a graph to P does not exceed k, is fixed-parameter tractable parameterized by k. Properties of graphs expressible by formulas from \Sigma_3 include being of bounded degree, excluding a forbidden subgraph, or containing a bounded dominating set. We complement this theorem by showing that such a general statement does not hold for formulas with even slightly more expressive prefix structure: there are formulas \phi\in \Pi_3, for which computing elimination distance is W[2]-hard.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube