Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

TSception: Capturing Temporal Dynamics and Spatial Asymmetry from EEG for Emotion Recognition (2104.02935v4)

Published 7 Apr 2021 in cs.LG

Abstract: The high temporal resolution and the asymmetric spatial activations are essential attributes of electroencephalogram (EEG) underlying emotional processes in the brain. To learn the temporal dynamics and spatial asymmetry of EEG towards accurate and generalized emotion recognition, we propose TSception, a multi-scale convolutional neural network that can classify emotions from EEG. TSception consists of dynamic temporal, asymmetric spatial, and high-level fusion layers, which learn discriminative representations in the time and channel dimensions simultaneously. The dynamic temporal layer consists of multi-scale 1D convolutional kernels whose lengths are related to the sampling rate of EEG, which learns the dynamic temporal and frequency representations of EEG. The asymmetric spatial layer takes advantage of the asymmetric EEG patterns for emotion, learning the discriminative global and hemisphere representations. The learned spatial representations will be fused by a high-level fusion layer. Using more generalized cross-validation settings, the proposed method is evaluated on two publicly available datasets DEAP and MAHNOB-HCI. The performance of the proposed network is compared with prior reported methods such as SVM, KNN, FBFgMDM, FBTSC, Unsupervised learning, DeepConvNet, ShallowConvNet, and EEGNet. TSception achieves higher classification accuracies and F1 scores than other methods in most of the experiments. The codes are available at https://github.com/yi-ding-cs/TSception

Citations (123)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube