Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Non-Asymptotic Analysis for Two Time-scale TDC with General Smooth Function Approximation (2104.02836v4)

Published 7 Apr 2021 in cs.LG

Abstract: Temporal-difference learning with gradient correction (TDC) is a two time-scale algorithm for policy evaluation in reinforcement learning. This algorithm was initially proposed with linear function approximation, and was later extended to the one with general smooth function approximation. The asymptotic convergence for the on-policy setting with general smooth function approximation was established in [bhatnagar2009convergent], however, the finite-sample analysis remains unsolved due to challenges in the non-linear and two-time-scale update structure, non-convex objective function and the time-varying projection onto a tangent plane. In this paper, we develop novel techniques to explicitly characterize the finite-sample error bound for the general off-policy setting with i.i.d.\ or Markovian samples, and show that it converges as fast as $\mathcal O(1/\sqrt T)$ (up to a factor of $\mathcal O(\log T)$). Our approach can be applied to a wide range of value-based reinforcement learning algorithms with general smooth function approximation.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.