Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Efficient state and parameter estimation for high-dimensional nonlinear system identification with application to MEG brain network modeling (2104.02827v1)

Published 6 Apr 2021 in eess.SY, cs.SY, q-bio.NC, q-bio.QM, and stat.ME

Abstract: System identification poses a significant bottleneck to characterizing and controlling complex systems. This challenge is greatest when both the system states and parameters are not directly accessible leading to a dual-estimation problem. Current approaches to such problems are limited in their ability to scale with many-parameter systems as often occurs in networks. In the current work, we present a new, computationally efficient approach to treat large dual-estimation problems. Our approach consists of directly integrating pseudo-optimal state estimation (the Extended Kalman Filter) into a dual-optimization objective, leaving a differentiable cost/error function of only in terms of the unknown system parameters which we solve using numerical gradient/Hessian methods. Intuitively, our approach consists of solving for the parameters that generate the most accurate state estimator (Extended Kalman Filter). We demonstrate that our approach is at least as accurate in state and parameter estimation as joint Kalman Filters (Extended/Unscented), despite lower complexity. We demonstrate the utility of our approach by inverting anatomically-detailed individualized brain models from human magnetoencephalography (MEG) data.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.