Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Efficient state and parameter estimation for high-dimensional nonlinear system identification with application to MEG brain network modeling (2104.02827v1)

Published 6 Apr 2021 in eess.SY, cs.SY, q-bio.NC, q-bio.QM, and stat.ME

Abstract: System identification poses a significant bottleneck to characterizing and controlling complex systems. This challenge is greatest when both the system states and parameters are not directly accessible leading to a dual-estimation problem. Current approaches to such problems are limited in their ability to scale with many-parameter systems as often occurs in networks. In the current work, we present a new, computationally efficient approach to treat large dual-estimation problems. Our approach consists of directly integrating pseudo-optimal state estimation (the Extended Kalman Filter) into a dual-optimization objective, leaving a differentiable cost/error function of only in terms of the unknown system parameters which we solve using numerical gradient/Hessian methods. Intuitively, our approach consists of solving for the parameters that generate the most accurate state estimator (Extended Kalman Filter). We demonstrate that our approach is at least as accurate in state and parameter estimation as joint Kalman Filters (Extended/Unscented), despite lower complexity. We demonstrate the utility of our approach by inverting anatomically-detailed individualized brain models from human magnetoencephalography (MEG) data.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.