Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Out-of-Distribution Robustness with Deep Recursive Filters (2104.02799v1)

Published 6 Apr 2021 in cs.RO

Abstract: Accurate state and uncertainty estimation is imperative for mobile robots and self driving vehicles to achieve safe navigation in pedestrian rich environments. A critical component of state and uncertainty estimation for robot navigation is to perform robustly under out-of-distribution noise. Traditional methods of state estimation decouple perception and state estimation making it difficult to operate on noisy, high dimensional data. Here, we describe an approach that combines the expressiveness of deep neural networks with principled approaches to uncertainty estimation found in recursive filters. We particularly focus on techniques that provide better robustness to out-of-distribution noise and demonstrate applicability of our approach on two scenarios: a simple noisy pendulum state estimation problem and real world pedestrian localization using the nuScenes dataset. We show that our approach improves state and uncertainty estimation compared to baselines while achieving approximately 3x improvement in computational efficiency.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.