Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Adaptive Variants of Optimal Feedback Policies (2104.02709v3)

Published 6 Apr 2021 in eess.SY, cs.RO, and cs.SY

Abstract: The stable combination of optimal feedback policies with online learning is studied in a new control-theoretic framework for uncertain nonlinear systems. The framework can be systematically used in transfer learning and sim-to-real applications, where an optimal policy learned for a nominal system needs to remain effective in the presence of significant variations in parameters. Given unknown parameters within a bounded range, the resulting adaptive control laws guarantee convergence of the closed-loop system to the state of zero cost. Online adjustment of the learning rate is used as a key stability mechanism, and preserves certainty equivalence when designing optimal policies without assuming uncertainty to be within the control range. The approach is illustrated on the familiar mountain car problem, where it yields near-optimal performance despite the presence of parametric model uncertainty.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube