DeepBlur: A Simple and Effective Method for Natural Image Obfuscation (2104.02655v1)
Abstract: There is a growing privacy concern due to the popularity of social media and surveillance systems, along with advances in face recognition software. However, established image obfuscation techniques are either vulnerable to re-identification attacks by human or deep learning models, insufficient in preserving image fidelity, or too computationally intensive to be practical. To tackle these issues, we present DeepBlur, a simple yet effective method for image obfuscation by blurring in the latent space of an unconditionally pre-trained generative model that is able to synthesize photo-realistic facial images. We compare it with existing methods by efficiency and image quality, and evaluate against both state-of-the-art deep learning models and industrial products (e.g., Face++, Microsoft face service). Experiments show that our method produces high quality outputs and is the strongest defense for most test cases.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.