Weakly-supervised Audio-visual Sound Source Detection and Separation (2104.02606v1)
Abstract: Learning how to localize and separate individual object sounds in the audio channel of the video is a difficult task. Current state-of-the-art methods predict audio masks from artificially mixed spectrograms, known as Mix-and-Separate framework. We propose an audio-visual co-segmentation, where the network learns both what individual objects look and sound like, from videos labeled with only object labels. Unlike other recent visually-guided audio source separation frameworks, our architecture can be learned in an end-to-end manner and requires no additional supervision or bounding box proposals. Specifically, we introduce weakly-supervised object segmentation in the context of sound separation. We also formulate spectrogram mask prediction using a set of learned mask bases, which combine using coefficients conditioned on the output of object segmentation , a design that facilitates separation. Extensive experiments on the MUSIC dataset show that our proposed approach outperforms state-of-the-art methods on visually guided sound source separation and sound denoising.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.