Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Using Molecular Embeddings in QSAR Modeling: Does it Make a Difference? (2104.02604v2)

Published 20 Mar 2021 in q-bio.BM, cs.LG, and q-bio.QM

Abstract: With the consolidation of deep learning in drug discovery, several novel algorithms for learning molecular representations have been proposed. Despite the interest of the community in developing new methods for learning molecular embeddings and their theoretical benefits, comparing molecular embeddings with each other and with traditional representations is not straightforward, which in turn hinders the process of choosing a suitable representation for QSAR modeling. A reason behind this issue is the difficulty of conducting a fair and thorough comparison of the different existing embedding approaches, which requires numerous experiments on various datasets and training scenarios. To close this gap, we reviewed the literature on methods for molecular embeddings and reproduced three unsupervised and two supervised molecular embedding techniques recently proposed in the literature. We compared these five methods concerning their performance in QSAR scenarios using different classification and regression datasets. We also compared these representations to traditional molecular representations, namely molecular descriptors and fingerprints. As opposed to the expected outcome, our experimental setup consisting of over 25,000 trained models and statistical tests revealed that the predictive performance using molecular embeddings did not significantly surpass that of traditional representations. While supervised embeddings yielded competitive results compared to those using traditional molecular representations, unsupervised embeddings tended to perform worse than traditional representations. Our results highlight the need for conducting a careful comparison and analysis of the different embedding techniques prior to using them in drug design tasks, and motivate a discussion about the potential of molecular embeddings in computer-aided drug design.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.