Papers
Topics
Authors
Recent
2000 character limit reached

Hölder Gradient Descent and Adaptive Regularization Methods in Banach Spaces for First-Order Points (2104.02564v1)

Published 6 Apr 2021 in math.OC, cs.CC, cs.NA, math.FA, and math.NA

Abstract: This paper considers optimization of smooth nonconvex functionals in smooth infinite dimensional spaces. A H\"older gradient descent algorithm is first proposed for finding approximate first-order points of regularized polynomial functionals. This method is then applied to analyze the evaluation complexity of an adaptive regularization method which searches for approximate first-order points of functionals with $\beta$-H\"older continuous derivatives. It is shown that finding an $\epsilon$-approximate first-order point requires at most $O(\epsilon{-\frac{p+\beta}{p+\beta-1}})$ evaluations of the functional and its first $p$ derivatives.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.