Papers
Topics
Authors
Recent
2000 character limit reached

Bias Correction in Deterministic Policy Gradient Using Robust MPC (2104.02413v1)

Published 6 Apr 2021 in eess.SY and cs.SY

Abstract: In this paper, we discuss the deterministic policy gradient using the Actor-Critic methods based on the linear compatible advantage function approximator, where the input spaces are continuous. When the policy is restricted by hard constraints, the exploration may not be Centred or Isotropic (non-CI). As a result, the policy gradient estimation can be biased. We focus on constrained policies based on Model Predictive Control (MPC) schemes and to address the bias issue, we propose an approximate Robust MPC approach accounting for the exploration. The RMPC-based policy ensures that a Centered and Isotropic (CI) exploration is approximately feasible. A posterior projection is used to ensure its exact feasibility, we formally prove that this approach does not bias the gradient estimation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.