When Pigs Fly: Contextual Reasoning in Synthetic and Natural Scenes (2104.02215v2)
Abstract: Context is of fundamental importance to both human and machine vision; e.g., an object in the air is more likely to be an airplane than a pig. The rich notion of context incorporates several aspects including physics rules, statistical co-occurrences, and relative object sizes, among others. While previous work has focused on crowd-sourced out-of-context photographs from the web to study scene context, controlling the nature and extent of contextual violations has been a daunting task. Here we introduce a diverse, synthetic Out-of-Context Dataset (OCD) with fine-grained control over scene context. By leveraging a 3D simulation engine, we systematically control the gravity, object co-occurrences and relative sizes across 36 object categories in a virtual household environment. We conducted a series of experiments to gain insights into the impact of contextual cues on both human and machine vision using OCD. We conducted psychophysics experiments to establish a human benchmark for out-of-context recognition, and then compared it with state-of-the-art computer vision models to quantify the gap between the two. We propose a context-aware recognition transformer model, fusing object and contextual information via multi-head attention. Our model captures useful information for contextual reasoning, enabling human-level performance and better robustness in out-of-context conditions compared to baseline models across OCD and other out-of-context datasets. All source code and data are publicly available at https://github.com/kreimanlab/WhenPigsFlyContext
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.