Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 149 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

BTS-Net: Bi-directional Transfer-and-Selection Network For RGB-D Salient Object Detection (2104.01784v1)

Published 5 Apr 2021 in cs.CV

Abstract: Depth information has been proved beneficial in RGB-D salient object detection (SOD). However, depth maps obtained often suffer from low quality and inaccuracy. Most existing RGB-D SOD models have no cross-modal interactions or only have unidirectional interactions from depth to RGB in their encoder stages, which may lead to inaccurate encoder features when facing low quality depth. To address this limitation, we propose to conduct progressive bi-directional interactions as early in the encoder stage, yielding a novel bi-directional transfer-and-selection network named BTS-Net, which adopts a set of bi-directional transfer-and-selection (BTS) modules to purify features during encoding. Based on the resulting robust encoder features, we also design an effective light-weight group decoder to achieve accurate final saliency prediction. Comprehensive experiments on six widely used datasets demonstrate that BTS-Net surpasses 16 latest state-of-the-art approaches in terms of four key metrics.

Citations (56)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.