Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Explainability-aided Domain Generalization for Image Classification (2104.01742v1)

Published 5 Apr 2021 in cs.LG and cs.CV

Abstract: Traditionally, for most machine learning settings, gaining some degree of explainability that tries to give users more insights into how and why the network arrives at its predictions, restricts the underlying model and hinders performance to a certain degree. For example, decision trees are thought of as being more explainable than deep neural networks but they lack performance on visual tasks. In this work, we empirically demonstrate that applying methods and architectures from the explainability literature can, in fact, achieve state-of-the-art performance for the challenging task of domain generalization while offering a framework for more insights into the prediction and training process. For that, we develop a set of novel algorithms including DivCAM, an approach where the network receives guidance during training via gradient based class activation maps to focus on a diverse set of discriminative features, as well as ProDrop and D-Transformers which apply prototypical networks to the domain generalization task, either with self-challenging or attention alignment. Since these methods offer competitive performance on top of explainability, we argue that the proposed methods can be used as a tool to improve the robustness of deep neural network architectures.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube