Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Extremal Graphs for a Spectral Inequality on Edge-Disjoint Spanning Trees (2104.01665v1)

Published 4 Apr 2021 in math.CO and cs.DM

Abstract: Liu, Hong, Gu, and Lai proved if the second largest eigenvalue of the adjacency matrix of graph $G$ with minimum degree $\delta \ge 2m+2 \ge 4$ satisfies $\lambda_2(G) < \delta - \frac{2m+1}{\delta+1}$, then $G$ contains at least $m+1$ edge-disjoint spanning trees, which verified a generalization of a conjecture by Cioab\u{a} and Wong. We show this bound is essentially the best possible by constructing $d$-regular graphs $\mathcal{G}{m,d}$ for all $d \ge 2m+2 \ge 4$ with at most $m$ edge-disjoint spanning trees and $\lambda_2(\mathcal{G}{m,d}) < d-\frac{2m+1}{d+3}$. As a corollary, we show that a spectral inequality on graph rigidity by Cioab\u{a}, Dewar, and Gu is essentially tight.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.