Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Multi-Feature Semi-Supervised Learning for COVID-19 Diagnosis from Chest X-ray Images (2104.01617v2)

Published 4 Apr 2021 in eess.IV

Abstract: Computed tomography (CT) and chest X-ray (CXR) have been the two dominant imaging modalities deployed for improved management of Coronavirus disease 2019 (COVID-19). Due to faster imaging, less radiation exposure, and being cost-effective CXR is preferred over CT. However, the interpretation of CXR images, compared to CT, is more challenging due to low image resolution and COVID-19 image features being similar to regular pneumonia. Computer-aided diagnosis via deep learning has been investigated to help mitigate these problems and help clinicians during the decision-making process. The requirement for a large amount of labeled data is one of the major problems of deep learning methods when deployed in the medical domain. To provide a solution to this, in this work, we propose a semi-supervised learning (SSL) approach using minimal data for training. We integrate local-phase CXR image features into a multi-feature convolutional neural network architecture where the training of SSL method is obtained with a teacher/student paradigm. Quantitative evaluation is performed on 8,851 normal (healthy), 6,045 pneumonia, and 3,795 COVID-19 CXR scans. By only using 7.06% labeled and 16.48% unlabeled data for training, 5.53% for validation, our method achieves 93.61\% mean accuracy on a large-scale (70.93%) test data. We provide comparison results against fully supervised and SSL methods. Code: https://github.com/endiqq/Multi-Feature-Semi-Supervised-Learning-for-COVID-19-CXR-Images

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.