Multi-Feature Semi-Supervised Learning for COVID-19 Diagnosis from Chest X-ray Images (2104.01617v2)
Abstract: Computed tomography (CT) and chest X-ray (CXR) have been the two dominant imaging modalities deployed for improved management of Coronavirus disease 2019 (COVID-19). Due to faster imaging, less radiation exposure, and being cost-effective CXR is preferred over CT. However, the interpretation of CXR images, compared to CT, is more challenging due to low image resolution and COVID-19 image features being similar to regular pneumonia. Computer-aided diagnosis via deep learning has been investigated to help mitigate these problems and help clinicians during the decision-making process. The requirement for a large amount of labeled data is one of the major problems of deep learning methods when deployed in the medical domain. To provide a solution to this, in this work, we propose a semi-supervised learning (SSL) approach using minimal data for training. We integrate local-phase CXR image features into a multi-feature convolutional neural network architecture where the training of SSL method is obtained with a teacher/student paradigm. Quantitative evaluation is performed on 8,851 normal (healthy), 6,045 pneumonia, and 3,795 COVID-19 CXR scans. By only using 7.06% labeled and 16.48% unlabeled data for training, 5.53% for validation, our method achieves 93.61\% mean accuracy on a large-scale (70.93%) test data. We provide comparison results against fully supervised and SSL methods. Code: https://github.com/endiqq/Multi-Feature-Semi-Supervised-Learning-for-COVID-19-CXR-Images
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.