Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Scene Text Retrieval via Joint Text Detection and Similarity Learning (2104.01552v1)

Published 4 Apr 2021 in cs.CV

Abstract: Scene text retrieval aims to localize and search all text instances from an image gallery, which are the same or similar to a given query text. Such a task is usually realized by matching a query text to the recognized words, outputted by an end-to-end scene text spotter. In this paper, we address this problem by directly learning a cross-modal similarity between a query text and each text instance from natural images. Specifically, we establish an end-to-end trainable network, jointly optimizing the procedures of scene text detection and cross-modal similarity learning. In this way, scene text retrieval can be simply performed by ranking the detected text instances with the learned similarity. Experiments on three benchmark datasets demonstrate our method consistently outperforms the state-of-the-art scene text spotting/retrieval approaches. In particular, the proposed framework of joint detection and similarity learning achieves significantly better performance than separated methods. Code is available at: https://github.com/lanfeng4659/STR-TDSL.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.