Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Explanatory models in neuroscience: Part 2 -- constraint-based intelligibility (2104.01489v2)

Published 3 Apr 2021 in q-bio.NC and cs.NE

Abstract: Computational modeling plays an increasingly important role in neuroscience, highlighting the philosophical question of how computational models explain. In the context of neural network models for neuroscience, concerns have been raised about model intelligibility, and how they relate (if at all) to what is found in the brain. We claim that what makes a system intelligible is an understanding of the dependencies between its behavior and the factors that are causally responsible for that behavior. In biological systems, many of these dependencies are naturally "top-down": ethological imperatives interact with evolutionary and developmental constraints under natural selection. We describe how the optimization techniques used to construct NN models capture some key aspects of these dependencies, and thus help explain why brain systems are as they are -- because when a challenging ecologically-relevant goal is shared by a NN and the brain, it places tight constraints on the possible mechanisms exhibited in both kinds of systems. By combining two familiar modes of explanation -- one based on bottom-up mechanism (whose relation to neural network models we address in a companion paper) and the other on top-down constraints, these models illuminate brain function.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: