Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A surrogate loss function for optimization of $F_β$ score in binary classification with imbalanced data (2104.01459v1)

Published 3 Apr 2021 in cs.LG and stat.ML

Abstract: The $F_\beta$ score is a commonly used measure of classification performance, which plays crucial roles in classification tasks with imbalanced data sets. However, the $F_\beta$ score cannot be used as a loss function by gradient-based learning algorithms for optimizing neural network parameters due to its non-differentiability. On the other hand, commonly used loss functions such as the binary cross-entropy (BCE) loss are not directly related to performance measures such as the $F_\beta$ score, so that neural networks optimized by using the loss functions may not yield optimal performance measures. In this study, we investigate a relationship between classification performance measures and loss functions in terms of the gradients with respect to the model parameters. Then, we propose a differentiable surrogate loss function for the optimization of the $F_\beta$ score. We show that the gradient paths of the proposed surrogate $F_\beta$ loss function approximate the gradient paths of the large sample limit of the $F_\beta$ score. Through numerical experiments using ResNets and benchmark image data sets, it is demonstrated that the proposed surrogate $F_\beta$ loss function is effective for optimizing $F_\beta$ scores under class imbalances in binary classification tasks compared with other loss functions.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube