Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 187 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Large-scale Study on Unsupervised Outlier Model Selection: Do Internal Strategies Suffice? (2104.01422v2)

Published 3 Apr 2021 in cs.LG

Abstract: Given an unsupervised outlier detection task, how should one select a detection algorithm as well as its hyperparameters (jointly called a model)? Unsupervised model selection is notoriously difficult, in the absence of hold-out validation data with ground-truth labels. Therefore, the problem is vastly understudied. In this work, we study the feasibility of employing internal model evaluation strategies for selecting a model for outlier detection. These so-called internal strategies solely rely on the input data (without labels) and the output (outlier scores) of the candidate models. We setup (and open-source) a large testbed with 39 detection tasks and 297 candidate models comprised of 8 detectors and various hyperparameter configurations. We evaluate 7 different strategies on their ability to discriminate between models w.r.t. detection performance, without using any labels. Our study reveals room for progress -- we find that none would be practically useful, as they select models only comparable to a state-of-the-art detector (with random configuration).

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube