Papers
Topics
Authors
Recent
2000 character limit reached

Block Scrambling Image Encryption Used in Combination with Data Augmentation for Privacy-Preserving DNNs (2104.01398v2)

Published 3 Apr 2021 in cs.CR and eess.IV

Abstract: In this paper, we propose a novel learnable image encryption method for privacy-preserving deep neural networks (DNNs). The proposed method is carried out on the basis of block scrambling used in combination with data augmentation techniques such as random cropping, horizontal flip and grid mask. The use of block scrambling enhances robustness against various attacks, and in contrast, the combination with data augmentation enables us to maintain a high classification accuracy even when using encrypted images. In an image classification experiment, the proposed method is demonstrated to be effective in privacy-preserving DNNs.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.