Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Two mixed finite element formulations for the weak imposition of the Neumann boundary conditions for the Darcy flow (2104.01366v1)

Published 3 Apr 2021 in math.NA and cs.NA

Abstract: We propose two different discrete formulations for the weak imposition of the Neumann boundary conditions of the Darcy flow. The Raviart-Thomas mixed finite element on both triangular and quadrilateral meshes is considered for both methods. One is a consistent discretization depending on a weighting parameter scaling as $\mathcal O(h{-1})$, while the other is a penalty-type formulation obtained as the discretization of a perturbation of the original problem and relies on a parameter scaling as $\mathcal O(h{-k-1})$, $k$ being the order of the Raviart-Thomas space. We rigorously prove that both methods are stable and result in optimal convergent numerical schemes with respect to appropriate mesh-dependent norms, although the chosen norms do not scale as the usual $L2$-norm. However, we are still able to recover the optimal a priori $L2$-error estimates for the velocity field, respectively, for high-order and the lowest-order Raviart-Thomas discretizations, for the first and second numerical schemes. Finally, some numerical examples validating the theory are exhibited.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.