Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Towards Real-time Semantic RGB-D SLAM in Dynamic Environments (2104.01316v1)

Published 3 Apr 2021 in cs.RO

Abstract: Most of the existing visual SLAM methods heavily rely on a static world assumption and easily fail in dynamic environments. Some recent works eliminate the influence of dynamic objects by introducing deep learning-based semantic information to SLAM systems. However such methods suffer from high computational cost and cannot handle unknown objects. In this paper, we propose a real-time semantic RGB-D SLAM system for dynamic environments that is capable of detecting both known and unknown moving objects. To reduce the computational cost, we only perform semantic segmentation on keyframes to remove known dynamic objects, and maintain a static map for robust camera tracking. Furthermore, we propose an efficient geometry module to detect unknown moving objects by clustering the depth image into a few regions and identifying the dynamic regions via their reprojection errors. The proposed method is evaluated on public datasets and real-world conditions. To the best of our knowledge, it is one of the first semantic RGB-D SLAM systems that run in real-time on a low-power embedded platform and provide high localization accuracy in dynamic environments.

Citations (60)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.