Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

Local and Global Topics in Text Modeling of Web Pages Nested in Web Sites (2104.01115v1)

Published 30 Mar 2021 in cs.IR and stat.ME

Abstract: Topic models are popular models for analyzing a collection of text documents. The models assert that documents are distributions over latent topics and latent topics are distributions over words. A nested document collection is where documents are nested inside a higher order structure such as stories in a book, articles in a journal, or web pages in a web site. In a single collection of documents, topics are global, or shared across all documents. For web pages nested in web sites, topic frequencies likely vary between web sites. Within a web site, topic frequencies almost certainly vary between web pages. A hierarchical prior for topic frequencies models this hierarchical structure and specifies a global topic distribution. Web site topic distributions vary around the global topic distribution and web page topic distributions vary around the web site topic distribution. In a nested collection of web pages, some topics are likely unique to a single web site. Local topics in a nested collection of web pages are topics unique to one web site. For US local health department web sites, brief inspection of the text shows local geographic and news topics specific to each department that are not present in others. Topic models that ignore the nesting may identify local topics, but do not label topics as local nor do they explicitly identify the web site owner of the local topic. For web pages nested inside web sites, local topic models explicitly label local topics and identifies the owning web site. This identification can be used to adjust inferences about global topics. In the US public health web site data, topic coverage is defined at the web site level after removing local topic words from pages. Hierarchical local topic models can be used to identify local topics, adjust inferences about if web sites cover particular health topics, and study how well health topics are covered.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.