Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Unsupervised Acoustic Unit Discovery by Leveraging a Language-Independent Subword Discriminative Feature Representation (2104.00994v2)

Published 2 Apr 2021 in eess.AS, cs.CL, and cs.SD

Abstract: This paper tackles automatically discovering phone-like acoustic units (AUD) from unlabeled speech data. Past studies usually proposed single-step approaches. We propose a two-stage approach: the first stage learns a subword-discriminative feature representation and the second stage applies clustering to the learned representation and obtains phone-like clusters as the discovered acoustic units. In the first stage, a recently proposed method in the task of unsupervised subword modeling is improved by replacing a monolingual out-of-domain (OOD) ASR system with a multilingual one to create a subword-discriminative representation that is more language-independent. In the second stage, segment-level k-means is adopted, and two methods to represent the variable-length speech segments as fixed-dimension feature vectors are compared. Experiments on a very low-resource Mboshi language corpus show that our approach outperforms state-of-the-art AUD in both normalized mutual information (NMI) and F-score. The multilingual ASR improved upon the monolingual ASR in providing OOD phone labels and in estimating the phone boundaries. A comparison of our systems with and without knowing the ground-truth phone boundaries showed a 16% NMI performance gap, suggesting that the current approach can significantly benefit from improved phone boundary estimation.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube