Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Scalable Hash Table for NUMA Systems (2104.00792v1)

Published 1 Apr 2021 in cs.DC and cs.DS

Abstract: Hash tables are used in a plethora of applications, including database operations, DNA sequencing, string searching, and many more. As such, there are many parallelized hash tables targeting multicore, distributed, and accelerator-based systems. We present in this work a multi-GPU hash table implementation that can process keys at a throughput comparable to that of distributed hash tables. Distributed CPU hash tables have received significantly more attention than GPU-based hash tables. We show that a single node with multiple GPUs offers roughly the same performance as a 500-1,000-core CPU-based cluster. Our algorithm's key component is our use of multiple sparse-graph data structures and binning techniques to build the hash table. As has been shown individually, these components can be written with massive parallelism that is amenable to GPU acceleration. Since we focus on an individual node, we also leverage communication primitives that are typically prohibitive in distributed environments. We show that our new multi-GPU algorithm shares many of the same features of the single GPU algorithm -- thus we have efficient collision management capabilities and can deal with a large number of duplicates. We evaluate our algorithm on two multi-GPU compute nodes: 1) an NVIDIA DGX2 server with 16 GPUs and 2) an IBM Power 9 Processor with 6 NVIDIA GPUs. With 32-bit keys, our implementation processes 8B keys per second, comparable to some 500-1,000-core CPU-based clusters and 4X faster than prior single-GPU implementations.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube