Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Low-Resource Language Modelling of South African Languages (2104.00772v1)

Published 1 Apr 2021 in cs.CL

Abstract: LLMs are the foundation of current neural network-based models for natural language understanding and generation. However, research on the intrinsic performance of LLMs on African languages has been extremely limited, which is made more challenging by the lack of large or standardised training and evaluation sets that exist for English and other high-resource languages. In this paper, we evaluate the performance of open-vocabulary LLMs on low-resource South African languages, using byte-pair encoding to handle the rich morphology of these languages. We evaluate different variants of n-gram models, feedforward neural networks, recurrent neural networks (RNNs), and Transformers on small-scale datasets. Overall, well-regularized RNNs give the best performance across two isiZulu and one Sepedi datasets. Multilingual training further improves performance on these datasets. We hope that this research will open new avenues for research into multilingual and low-resource LLMling for African languages.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.