Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learning Foreground-Background Segmentation from Improved Layered GANs (2104.00483v2)

Published 1 Apr 2021 in cs.CV

Abstract: Deep learning approaches heavily rely on high-quality human supervision which is nonetheless expensive, time-consuming, and error-prone, especially for image segmentation task. In this paper, we propose a method to automatically synthesize paired photo-realistic images and segmentation masks for the use of training a foreground-background segmentation network. In particular, we learn a generative adversarial network that decomposes an image into foreground and background layers, and avoid trivial decompositions by maximizing mutual information between generated images and latent variables. The improved layered GANs can synthesize higher quality datasets from which segmentation networks of higher performance can be learned. Moreover, the segmentation networks are employed to stabilize the training of layered GANs in return, which are further alternately trained with Layered GANs. Experiments on a variety of single-object datasets show that our method achieves competitive generation quality and segmentation performance compared to related methods.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.