Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Log-domain decoding of quantum LDPC codes over binary finite fields (2104.00304v3)

Published 1 Apr 2021 in cs.IT, math.IT, and quant-ph

Abstract: A quantum stabilizer code over GF$(q)$ corresponds to a classical additive code over GF$(q2)$ that is self-orthogonal with respect to a symplectic inner product. We study the decoding of quantum low-density parity-check (LDPC) codes over binary finite fields GF$(q=2l)$ by the sum-product algorithm, also known as belief propagation (BP). Conventionally, a message in a nonbinary BP for quantum codes over GF$(2l)$ represents a probability vector over GF$(2{2l})$, inducing high decoding complexity. In this paper, we explore the property of the symplectic inner product and show that scalar messages suffice for BP decoding of nonbinary quantum codes, rather than vector messages necessary for the conventional BP. Consequently, we propose a BP decoding algorithm for quantum codes over GF$(2l)$ by passing scalar messages so that it has low computation complexity. The algorithm is specified in log domain by using log-likelihood ratios (LLRs) of the channel statistics to have a low implementation cost. Moreover, techniques such as message normalization or offset can be naturally applied in this algorithm to mitigate the effects of short cycles to improve BP performance. This is important for nonbinary quantum codes since they may have more short cycles compared to binary quantum codes. Several computer simulations are provided to demonstrate these advantages. The scalar-based strategy can also be used to improve the BP decoding of classical linear codes over GF$(2l)$ with many short cycles.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.