Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

GenEO spectral coarse spaces in SPD domain decomposition (2104.00280v3)

Published 1 Apr 2021 in math.NA and cs.NA

Abstract: Two-level domain decomposition methods are preconditioned Krylov solvers. What separates one- and two-level domain decomposition methods is the presence of a coarse space in the latter. The abstract Schwarz framework is a formalism that allows to define and study a large variety of two-level methods. The objective of this article is to define, in the abstract Schwarz framework, a family of coarse spaces called the GenEO coarse spaces (for Generalized Eigenvalues in the Overlaps). In detail, this work is a generalization of several methods, each of which exists for a particular choice of domain decomposition method. The article both unifies the GenEO theory and extends it to new settings. The proofs are based on an abstract Schwarz theory which now applies to coarse space corrections by projection, and has been extended to consider singular local solves. Bounds for the condition numbers of the preconditioned operators are proved that are independent of the parameters in the problem (e.g., any coefficients in an underlying PDE or the number of subdomains). The coarse spaces are computed by finding low- or high-frequency spaces of some well-chosen generalized eigenvalue problems in each subdomain. The abstract framework is illustrated by defining two-level Additive Schwarz, Neumann-Neumann and Inexact Schwarz preconditioners for a two-dimensional linear elasticity problem. Explicit theoretical bounds as well as numerical results are provided for this example.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube