Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Intrusive and non-intrusive reduced order modeling of the rotating thermal shallow water equation (2104.00213v2)

Published 1 Apr 2021 in math.NA and cs.NA

Abstract: In this paper, we investigate projection-based intrusive and data-driven non-intrusive model order reduction methods in numerical simulation of rotating thermal shallow water equation (RTSWE) in parametric and non-parametric form. Discretization of the RTSWE in space with centered finite differences leads to Hamiltonian system of ordinary differential equations with linear and quadratic terms. The full-order model (FOM) is obtained by applying linearly implicit Kahan's method in time. Applying proper orthogonal decomposition with Galerkin projection (POD-G), we construct the intrusive reduced-order model (ROM). We apply operator inference (OpInf) with re-projection for non-intrusive reduced-order modeling. In the parametric case, we make use of the parameter dependency at the level of the PDE without interpolating between the reduced operators. The least-squares problem of the OpInf is regularized with the minimum norm solution. Both ROMs behave similar and are able to accurately predict the test and training data and capture system behavior in the prediction phase with several orders of computational speedup over the FOM. The preservation of system physics such as the conserved quantities of the RTSWE by both ROMs enables that the models fit better to data and stable solutions are obtained in long-term predictions, which are robust to parameter changes.

Citations (16)

Summary

We haven't generated a summary for this paper yet.