Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Hierarchical Road Topology Learning for Urban Map-less Driving (2104.00084v1)

Published 31 Mar 2021 in cs.RO, cs.CV, and cs.LG

Abstract: The majority of current approaches in autonomous driving rely on High-Definition (HD) maps which detail the road geometry and surrounding area. Yet, this reliance is one of the obstacles to mass deployment of autonomous vehicles due to poor scalability of such prior maps. In this paper, we tackle the problem of online road map extraction via leveraging the sensory system aboard the vehicle itself. To this end, we design a structured model where a graph representation of the road network is generated in a hierarchical fashion within a fully convolutional network. The method is able to handle complex road topology and does not require a user in the loop.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.