Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Approximation Schemes for Multiperiod Binary Knapsack Problems (2104.00034v1)

Published 31 Mar 2021 in cs.DS

Abstract: An instance of the multiperiod binary knapsack problem (MPBKP) is given by a horizon length $T$, a non-decreasing vector of knapsack sizes $(c_1, \ldots, c_T)$ where $c_t$ denotes the cumulative size for periods $1,\ldots,t$, and a list of $n$ items. Each item is a triple $(r, q, d)$ where $r$ denotes the reward of the item, $q$ its size, and $d$ its time index (or, deadline). The goal is to choose, for each deadline $t$, which items to include to maximize the total reward, subject to the constraints that for all $t=1,\ldots,T$, the total size of selected items with deadlines at most $t$ does not exceed the cumulative capacity of the knapsack up to time $t$. We also consider the multiperiod binary knapsack problem with soft capacity constraints (MPBKP-S) where the capacity constraints are allowed to be violated by paying a penalty that is linear in the violation. The goal is to maximize the total profit, i.e., the total reward of selected items less the total penalty. Finally, we consider the multiperiod binary knapsack problem with soft stochastic capacity constraints (MPBKP-SS), where the non-decreasing vector of knapsack sizes $(c_1, \ldots, c_T)$ follow some arbitrary joint distribution but we are given access to the profit as an oracle, and we choose a subset of items to maximize the total expected profit, i.e., the total reward less the total expected penalty. For MPBKP, we exhibit a fully polynomial-time approximation scheme with runtime $\tilde{\mathcal{O}}\left(\min\left{n+\frac{T{3.25}}{\epsilon{2.25}},n+\frac{T{2}}{\epsilon{3}},\frac{nT}{\epsilon2},\frac{n2}{\epsilon}\right}\right)$ that achieves $(1+\epsilon)$ approximation; for MPBKP-S, the $(1+\epsilon)$ approximation can be achieved in $\mathcal{O}\left(\frac{n\log n}{\epsilon}\cdot\min\left{\frac{T}{\epsilon},n\right}\right)$; for MPBKP-SS, a greedy algorithm is a 2-approximation when items have the same size.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.