Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Using activation histograms to bound the number of affine regions in ReLU feed-forward neural networks (2103.17174v3)

Published 31 Mar 2021 in stat.ML and cs.LG

Abstract: Several current bounds on the maximal number of affine regions of a ReLU feed-forward neural network are special cases of the framework [1] which relies on layer-wise activation histogram bounds. We analyze and partially solve a problem in algebraic topology the solution of which would fully exploit this framework. Our partial solution already induces slightly tighter bounds and suggests insight in how parameter initialization methods can affect the number of regions. Furthermore, we extend the framework to allow the composition of subnetwork instead of layer-wise activation histogram bounds to reduce the number of required compositions which negatively affect the tightness of the resulting bound.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)