Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

CrowdTeacher: Robust Co-teaching with Noisy Answers & Sample-specific Perturbations for Tabular Data (2103.17144v1)

Published 31 Mar 2021 in cs.LG and cs.AI

Abstract: Samples with ground truth labels may not always be available in numerous domains. While learning from crowdsourcing labels has been explored, existing models can still fail in the presence of sparse, unreliable, or diverging annotations. Co-teaching methods have shown promising improvements for computer vision problems with noisy labels by employing two classifiers trained on each others' confident samples in each batch. Inspired by the idea of separating confident and uncertain samples during the training process, we extend it for the crowdsourcing problem. Our model, CrowdTeacher, uses the idea that perturbation in the input space model can improve the robustness of the classifier for noisy labels. Treating crowdsourcing annotations as a source of noisy labeling, we perturb samples based on the certainty from the aggregated annotations. The perturbed samples are fed to a Co-teaching algorithm tuned to also accommodate smaller tabular data. We showcase the boost in predictive power attained using CrowdTeacher for both synthetic and real datasets across various label density settings. Our experiments reveal that our proposed approach beats baselines modeling individual annotations and then combining them, methods simultaneously learning a classifier and inferring truth labels, and the Co-teaching algorithm with aggregated labels through common truth inference methods.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.