Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

An Exploration of Data Augmentation Techniques for Improving English to Tigrinya Translation (2103.16789v2)

Published 31 Mar 2021 in cs.CL

Abstract: It has been shown that the performance of neural machine translation (NMT) drops starkly in low-resource conditions, often requiring large amounts of auxiliary data to achieve competitive results. An effective method of generating auxiliary data is back-translation of target language sentences. In this work, we present a case study of Tigrinya where we investigate several back-translation methods to generate synthetic source sentences. We find that in low-resource conditions, back-translation by pivoting through a higher-resource language related to the target language proves most effective resulting in substantial improvements over baselines.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.