Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

An Exploration of Data Augmentation Techniques for Improving English to Tigrinya Translation (2103.16789v2)

Published 31 Mar 2021 in cs.CL

Abstract: It has been shown that the performance of neural machine translation (NMT) drops starkly in low-resource conditions, often requiring large amounts of auxiliary data to achieve competitive results. An effective method of generating auxiliary data is back-translation of target language sentences. In this work, we present a case study of Tigrinya where we investigate several back-translation methods to generate synthetic source sentences. We find that in low-resource conditions, back-translation by pivoting through a higher-resource language related to the target language proves most effective resulting in substantial improvements over baselines.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.