Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

New Algorithms for Discrete-Time Parameter Estimation (2103.16653v2)

Published 30 Mar 2021 in cs.LG, cs.SY, eess.SY, and math.OC

Abstract: We propose two algorithms for discrete-time parameter estimation, one for time-varying parameters under persistent excitation (PE) condition, another for constant parameters under no PE condition. For the first algorithm, we show that in the presence of time-varying unknown parameters, the parameter estimation error converges uniformly to a compact set under conditions of persistent excitation, with the size of the compact set proportional to the time-variation of unknown parameters. Leveraging a projection operator, the second algorithm is shown to result in boundedness guarantees when the plant has constant unknown parameters. Simulations show better convergence results compared to recursive least squares (RLS) and comparable results to RLS with forgetting factor.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.