Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

DAP: Detection-Aware Pre-training with Weak Supervision (2103.16651v1)

Published 30 Mar 2021 in cs.CV

Abstract: This paper presents a detection-aware pre-training (DAP) approach, which leverages only weakly-labeled classification-style datasets (e.g., ImageNet) for pre-training, but is specifically tailored to benefit object detection tasks. In contrast to the widely used image classification-based pre-training (e.g., on ImageNet), which does not include any location-related training tasks, we transform a classification dataset into a detection dataset through a weakly supervised object localization method based on Class Activation Maps to directly pre-train a detector, making the pre-trained model location-aware and capable of predicting bounding boxes. We show that DAP can outperform the traditional classification pre-training in terms of both sample efficiency and convergence speed in downstream detection tasks including VOC and COCO. In particular, DAP boosts the detection accuracy by a large margin when the number of examples in the downstream task is small.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.