Papers
Topics
Authors
Recent
2000 character limit reached

Multilayer Graph Clustering with Optimized Node Embedding (2103.16534v1)

Published 30 Mar 2021 in cs.LG and cs.AI

Abstract: We are interested in multilayer graph clustering, which aims at dividing the graph nodes into categories or communities. To do so, we propose to learn a clustering-friendly embedding of the graph nodes by solving an optimization problem that involves a fidelity term to the layers of a given multilayer graph, and a regularization on the (single-layer) graph induced by the embedding. The fidelity term uses the contrastive loss to properly aggregate the observed layers into a representative embedding. The regularization pushes for a sparse and community-aware graph, and it is based on a measure of graph sparsification called "effective resistance", coupled with a penalization of the first few eigenvalues of the representative graph Laplacian matrix to favor the formation of communities. The proposed optimization problem is nonconvex but fully differentiable, and thus can be solved via the descent gradient method. Experiments show that our method leads to a significant improvement w.r.t. state-of-the-art multilayer graph clustering algorithms.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.