Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Two-stage Robust Energy Storage Planning with Probabilistic Guarantees: A Data-driven Approach (2103.16424v4)

Published 30 Mar 2021 in eess.SY and cs.SY

Abstract: This paper addresses a central challenge of jointly considering shorter-term (e.g. hourly) and longer-term (e.g. yearly) uncertainties in power system planning with increasing penetration of renewable and storage resources. In conventional planning decision making, shorter-term (e.g., hourly) variations are not explicitly accounted for. However, given the deepening penetration of variable resources, it is becoming imperative to consider such shorter-term variation in the longer-term planning exercise. By leveraging the abundant amount of operational observation data, we propose a scenario-based robust planning framework that provides rigorous guarantees on the future operation risk of planning decisions considering a broad range of operational conditions, such as renewable generation fluctuations and load variations. By connecting two-stage robust optimization with the scenario approach theory, we show that with a carefully chosen number of scenarios, the operational risk level of the robust solution can be adaptive to the risk preference set by planners. The theoretical guarantees hold true for any distributions, and the proposed approach is scalable towards real-world power grids. Furthermore, the column-and-constraint generation algorithm is used to solve the two-stage robust planning problem and tighten theoretical guarantees. We substantiate this framework through a planning problem of energy storage in a power grid with deep renewable penetration. Case studies are performed on large-scale test systems (modified IEEE 118-bus system) to illustrate the theoretical bounds as well as the scalability of proposed algorithm.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.