Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Dynamic Domain Adaptation for Efficient Inference (2103.16403v1)

Published 26 Mar 2021 in cs.CV

Abstract: Domain adaptation (DA) enables knowledge transfer from a labeled source domain to an unlabeled target domain by reducing the cross-domain distribution discrepancy. Most prior DA approaches leverage complicated and powerful deep neural networks to improve the adaptation capacity and have shown remarkable success. However, they may have a lack of applicability to real-world situations such as real-time interaction, where low target inference latency is an essential requirement under limited computational budget. In this paper, we tackle the problem by proposing a dynamic domain adaptation (DDA) framework, which can simultaneously achieve efficient target inference in low-resource scenarios and inherit the favorable cross-domain generalization brought by DA. In contrast to static models, as a simple yet generic method, DDA can integrate various domain confusion constraints into any typical adaptive network, where multiple intermediate classifiers can be equipped to infer "easier" and "harder" target data dynamically. Moreover, we present two novel strategies to further boost the adaptation performance of multiple prediction exits: 1) a confidence score learning strategy to derive accurate target pseudo labels by fully exploring the prediction consistency of different classifiers; 2) a class-balanced self-training strategy to explicitly adapt multi-stage classifiers from source to target without losing prediction diversity. Extensive experiments on multiple benchmarks are conducted to verify that DDA can consistently improve the adaptation performance and accelerate target inference under domain shift and limited resources scenarios

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.