Papers
Topics
Authors
Recent
2000 character limit reached

Head2HeadFS: Video-based Head Reenactment with Few-shot Learning (2103.16229v1)

Published 30 Mar 2021 in cs.CV

Abstract: Over the past years, a substantial amount of work has been done on the problem of facial reenactment, with the solutions coming mainly from the graphics community. Head reenactment is an even more challenging task, which aims at transferring not only the facial expression, but also the entire head pose from a source person to a target. Current approaches either train person-specific systems, or use facial landmarks to model human heads, a representation that might transfer unwanted identity attributes from the source to the target. We propose head2headFS, a novel easily adaptable pipeline for head reenactment. We condition synthesis of the target person on dense 3D face shape information from the source, which enables high quality expression and pose transfer. Our video-based rendering network is fine-tuned under a few-shot learning strategy, using only a few samples. This allows for fast adaptation of a generic generator trained on a multiple-person dataset, into a person-specific one.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.