Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Data-Driven Predictive Control for Linear Parameter-Varying Systems (2103.16160v2)

Published 30 Mar 2021 in eess.SY and cs.SY

Abstract: Based on the extension of the behavioral theory and the Fundamental Lemma for Linear Parameter-Varying (LPV) systems, this paper introduces a Data-driven Predictive Control (DPC) scheme capable to ensure reference tracking and satisfaction of Input-Output (IO) constraints for an unknown system under the conditions that (i) the system can be represented in an LPV form and (ii) an informative data-set containing measured IO and scheduling trajectories of the system is available. It is shown that if the data set satisfies a persistence of excitation condition, then a data-driven LPV predictor of future trajectories of the system can be constructed from the IO data set and online measured data. The approach represents the first step towards a DPC solution for nonlinear and time-varying systems due to the potential of the LPV framework to represent them. Two illustrative examples, including reference tracking control of a nonlinear system, are provided to demonstrate that the data-based LPV-DPC scheme, achieves similar performance as LPV model-based predictive control.

Citations (44)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.