Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Convergence on a symmetric accelerated stochastic ADMM with larger stepsizes (2103.16154v2)

Published 30 Mar 2021 in math.OC, cs.NA, and math.NA

Abstract: In this paper, we develop a symmetric accelerated stochastic Alternating Direction Method of Multipliers (SAS-ADMM) for solving separable convex optimization problems with linear constraints. The objective function is the sum of a possibly nonsmooth convex function and an average function of many smooth convex functions. Our proposed algorithm combines both ideas of ADMM and the techniques of accelerated stochastic gradient methods possibly with variance reduction to solve the smooth subproblem. One main feature of SAS-ADMM is that its dual variable is symmetrically updated after each update of the separated primal variable, which would allow a more flexible and larger convergence region of the dual variable compared with that of standard deter-ministic or stochastic ADMM. This new stochastic optimization algorithm is shown to have ergodic converge in expectation with O(1/T) convergence rate, where T is the number of outer iterations. Our preliminary experiments indicate the proposed algorithm is very effective for solving separable optimization problems from big-data applications. Finally, 3-block extensions of the algorithm and its variant of an accelerated stochastic augmented Lagrangian method are discussed in the appendix.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.