Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 124 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Approximate Nearest-Neighbor Search for Line Segments (2103.16071v2)

Published 30 Mar 2021 in cs.CG

Abstract: Approximate nearest-neighbor search is a fundamental algorithmic problem that continues to inspire study due its essential role in numerous contexts. In contrast to most prior work, which has focused on point sets, we consider nearest-neighbor queries against a set of line segments in $\mathbb{R}d$, for constant dimension $d$. Given a set $S$ of $n$ disjoint line segments in $\mathbb{R}d$ and an error parameter $\varepsilon > 0$, the objective is to build a data structure such that for any query point $q$, it is possible to return a line segment whose Euclidean distance from $q$ is at most $(1+\varepsilon)$ times the distance from $q$ to its nearest line segment. We present a data structure for this problem with storage $O((n2/\varepsilon{d}) \log (\Delta/\varepsilon))$ and query time $O(\log (\max(n,\Delta)/\varepsilon))$, where $\Delta$ is the spread of the set of segments $S$. Our approach is based on a covering of space by anisotropic elements, which align themselves according to the orientations of nearby segments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.