Saddle Point Optimization with Approximate Minimization Oracle (2103.15985v2)
Abstract: A major approach to saddle point optimization $\min_x\max_y f(x, y)$ is a gradient based approach as is popularized by generative adversarial networks (GANs). In contrast, we analyze an alternative approach relying only on an oracle that solves a minimization problem approximately. Our approach locates approximate solutions $x'$ and $y'$ to $\min_{x'}f(x', y)$ and $\max_{y'}f(x, y')$ at a given point $(x, y)$ and updates $(x, y)$ toward these approximate solutions $(x', y')$ with a learning rate $\eta$. On locally strong convex--concave smooth functions, we derive conditions on $\eta$ to exhibit linear convergence to a local saddle point, which reveals a possible shortcoming of recently developed robust adversarial reinforcement learning algorithms. We develop a heuristic approach to adapt $\eta$ derivative-free and implement zero-order and first-order minimization algorithms. Numerical experiments are conducted to show the tightness of the theoretical results as well as the usefulness of the $\eta$ adaptation mechanism.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.